
Semantic and Structure Based XML Similarity:
The XS3 Prototype

Joe Tekli

LE2I Laboratory CNRS
University of Bourgogne

21078 Dijon Cedex
France

joe.tekli@khali.u-bourgogne.fr

Richard Chbeir

LE2I Laboratory CNRS
University of Bourgogne

21078 Dijon Cedex
France

richard.chbeir@u-bourgogne.fr

Kokou Yetongnon

LE2I Laboratory CNRS
University of Bourgogne

21078 Dijon Cedex
France

kokou.yetongnon@u-bourgogne.fr

1. Introduction
Due to the ever-increasing web availability of XML-based
data, an efficient approach to compare XML documents
becomes crucial in information retrieval. Such
comparison of XML documents has applications in
version control (finding, scoring and browsing changes
between different versions of a document), change
management and data warehousing (support of temporal
queries and index maintenance) [3, 4, 5], XML query
systems (finding and ranking results according to their
similarity in order to retrieve the best results possible)
[10, 12] as well as in the classification/clustering of XML
documents gathered from the web against a set of DTDs
declared in an XML database (just as schemas are
necessary in traditional DBMS for the provision of
efficient storage, retrieval, protection and indexing
facilities, the same is true for DTDs and XML
repositories) [1, 2, 8].

Here, we present our XML comparison prototype XS3
(XML Structural and Semantic Similarity) able to
integrate IR semantic similarity assessment in an edit
distance structural similarity algorithm, seeking to amend
similarity judgments when comparing heterogeneous1
XML-based documents.

2. System architecture
XS3 prototype (implemented using C#) is made up of four
components: a validation component, an edit distance
component, a synthetic XML data generator, and a
taxonomic analyzer. They are respectively presented in
the following subsections.

1 We note by heterogeneous XML document, one that doesn’t

conform to a given grammar (DTD or XML Schema), which is
the case of a lot of XML documents found on the web [7].

Figure 1 depicts the overall architecture of our system.
XML documents (synthesized via our XML generator or
attained from some external source) are tested using our
validation component before being passed to the edit
distance component for similarity computations. Semantic
similarity values between pairs of words/expressions
would have to be computed by the taxonomic analyzer
prior to the comparison phase, so as to be used (via our
SCM) in identifying the semantic relatedness between
element/attribute node labels.

Fig. 1. Overall system architecture

2.1 Validation component

The validation component verifies the integrity of XML
documents, testing if the documents are well formed with
respect to the basic XML syntactic rules [9]. Note that we
have considered the following simplifications in order to
gain in computation and time complexity:

− XML documents to be treated by the validation
component should have attributes appearing as
children of their containing elements.

− Empty elements should be handled as PCDATA
elements with the constraint of having null contents.

In addition, the validation component transforms
documents to their Ld-pair representations [11] in order to
be treated by the edit distance component.

Edit Distance Component

Validation Component

Synthetic XML
Documents Generator

Taxonomic
Analyser

External XML data
source

Synthetic XML
documents XML documents

Well formed XML documents

Semantic
similarity values
between words
(expressions) in
a given corpus

mailto:joe.tekli@khali.u-bourgogne.fr
mailto:richard.chbeir@u-bourgogne.fr
mailto:kokou.yetongnon@u-bourgogne.fr

2.2 Edit distance component

The edit distance component in XS3 undertakes XML
similarity computations following the process developed
in our study [11]. It basically comprises of an original
operation cost model (SCM), utilized with Chawathe’s
classical edit distance algorithm [5], in order to take into
account the semantic relatedness of XML
element/attribute labels in the comparison process.

2.3 Synthetic XML documents generator

A synthetic XML data generator was also implemented in
order to produce sets of XML documents based on given
DTDs. The synthetic XML generator accepts as input: a
DTD document, a MaxRepeats1 value designating the
maximum number of times a node will appear as child of
its parent (when * or + options are encountered in the
DTD), as well as an NbDocs value underscoring the
number of synthetic XML documents to be produced.

Note that for the sake of computational simplicity, the
DTDs to be treated by our generator should respect
certain criterion in order to yield well formed documents:

− Attributes must be introduced as children of their
containing elements:
• <!ELEMENT Employee (#PCDATA)>

<!ATTLIST Employee Name CDATA>

The preceding should be replaced by the following:

<!ELEMENT Employee (Name)>
<!ELEMENT Name (#PCDATA)>.

− Since attributes are treated as sub-elements, we
disregard empty elements:
• Declarations such as <!ELEMENT Employee (EMPTY)>

should not appear in the DTDs presented to our generator.

− We also disregard elements without restrictions:
• Declarations such as <!ELEMENT Employee (ANY)>

should not appear in the DTDs presented to our generator.

− The “OR” operator (“|”), representing an alternative of
elements, is not considered in our generator. We only
consider the “AND” operator, representing sequences.
• Declarations such as <!ELEMENT University (Faculty |

Department)> are not analysed by our generator.
Consequently, declarations containing overlapping brackets
should not appear in our input DTDs:
<!ELEMENT University (Faculty, ((A, Section) | Laboratory)).

− Input DTDs should not contain entity declarations:
• <!ENTITY … >.

− Input DTDs should not contain prologues:
• <!DOCTYPE … >.

− Input DTDs should not contain comments:
• <!-- … -->.

1 A greater MaxRepeats value increases the probability of

attaining greater size and variability when generating
synthetic XML documents

Figure 2 shows a typical DTD that can be treated by
our XML documents generator.

2.4 Taxonomic analyzer

Furthermore, a taxonomic analyzer was also introduced so
as to compute semantic similarity values between words
(expressions) in a given taxonomy. Our taxonomic
analyzer accepts as input a hierarchical taxonomy and
corresponding corpus-based word occurrences.
Consequently, concept frequencies are computed and,
thereafter, used to compute semantic similarity (via Lin
[6]) between pairs of nodes in the knowledge base.

<!ELEMENT University (Faculty+)>
 <!ELEMENT Faculty (Department+, Laboratory, Section*)>
 <!ELEMENT Department (#PCDATA)>
 <!ELEMENT Laboratory (Professor, Student?)>
 <!ELEMENT Professor (#PCDATA)>
 <!ELEMENT Student (#PCDATA)>
 <!ELEMENT Section (#PCDATA)>

Fig. 2. Sample DTD

Semantic similarity computational details are given in

the main paper [11].
Note that we utilized an indexed Oracle 9i DB2 table

to store, and subsequently access similarity values.
In fact, we had considered computing semantic similarity
each time it was needed (practically with each edit
distance operation execution). However, pre-computing
similarity values for each pair of nodes in the taxonomy at
hand and, subsequently, managing them via an indexed
table proved to be less time consuming. For example, an
average of 0.25 seconds per pair-wise semantic similarity
assessment was saved, when exploiting a 677 words
WordNet-based taxonomy, owing to that procedure.

3. XS3 comparison modules
XS3 enables four comparison functionalities, made
available via dedicated comparison modules.

3.1 One to One (1/1) comparison module

It is the basic module of the system upon which are built
all other three modules. Its function comes down to
comparing one XML document X1 to another document
X2, the user being able to choose between the intuitive
cost model ICM (assigning unit operation costs) mostly
used in the literature and our semantic cost model SCM
[11] (cf. Figure 3).

2 Oracle uses the B-Tree indexing technique

Fig. 3. Simplified UML Activity diagram describing the 1/1
comparison functionality of XS3.

3.2 One to Many (1/∞) comparison module

It utilizes the one to one module in order to compare one
XML document X1 to the set of XML documents
contained in the same folder. This functionality allows the
ranking of documents according to their similarity to X1
(cf. Figure 4).

Fig. 4. Simplified UML Activity diagram describing the 1/∞
comparison functionality of XS3.

3.3 Many to Many (∞/∞) comparison module

It uses the one to many comparison module in order to
compare XML documents contained in the same folder,
one by one. This functionality would allow the clustering
of similar documents, the clustering phase not being
implemented in our prototype (cf. Figure 5).

Fig. 5. Simplified UML Activity diagram describing the ∞/∞
comparison functionality of XS3.

3.4 Set comparison module

It compares sets of XML documents by computing
corresponding average similarity scores (cf. Figure 6).
This functionality was proven useful while undertaking
our experiments in order to validate our approach [11].

Fig. 6. Simplified UML Activity diagram describing the set
comparison functionality of XS3.

∞/∞ comparison « Iterative » 1/1 comparison

Selecting XML
documents, one

by one

Cost Model

1/∞ comparison

XML document

« Buffer »
XML documents
contained in set 2

All the documents have been already selected
End of Activity

Restart from
beginning

« Buffer »
Similarity

values

Set 1

Set 2

Computing average
similarity value

between set 1 and
set 2

X

Set

X
Set

Cost
model

Set comparison

Clustering
XML

documents
1/∞ comparison

XML document X1

« Buffer »
XML documents

≠ XML1

Selecting XML
documents, one

by one

Cost Model

All the documents have been already selected
End of Activity

Not implemented in
our prototype

X1

Set

X1

Set

Cost
model

XML Document X1
« Buffer »
Storing X1

Cost model

1/1 Comparison

« Buffer »
Similarity

values

Set of XML documents
{Weight = 1}

Ranking XML
documents

Documents ranked
according to their
similarity to X1

X1

XML Document X1

XML Document X2

Cost model

Edit distance
Algorithm [5]

Validation
component

Similarity
value

ICM

Indexed table storing pre-
computed semantic

similarity values between
words/expressions SCM

X1

X2

« Buffer »
Storing well

formed
documents

Set of XML
documents

Cost model

« Iterative »

« Iterative » 1/∞ comparison

4. XS3 Interfaces
XS3 provides a set of visual interfaces easy to be used and
managed. Figure 7 is a screen shot of its 1/1 comparison
interface. The user starts by identifying the cost model to
be employed and the XML documents to be compared.
Detailed edit distance computations can be depicted if the
user so wishes. In addition to the edit distance value and
the corresponding similarity value, the time span needed
to perform the comparison process is also reported on
screen.

Fig. 7. The One to One comparison interface.

Fig. 8. Screen shot of the taxonomic analyzer interface.

Figure 8 shows a screen shot of the taxonomic
analyzer interface while computing similarity values
between words/expressions. After storing a given
taxonomy, along with corresponding word occurrences, in
dedicated Oracle 9i DB tables, the user utilizes the
taxonomic analyzer interface to compute word
frequencies as well as corresponding word similarity
values. In addition, the user can test the speed of the
system, comparing the time to compute the similarity
value between a pair of words, with the time to access it
in the indexed Oracle 9i DB table dedicated to storing
similarity values (if the table is already populated).

XS3 is available for research purposes and can be obtained
from the authors.

References

1. Bertino E., Guerrini G., Mesiti M., Rivara I. and Tavella C.,

Measuring the Structural Similarity among XML
Documents and DTDs, Technical Report, University of
Genova, 2002, http://www.disi.unige.it/person/MesitiM.

2. Bertino E., Guerrini G., Mesiti M., A Matching Algorithm
for Measuring the Structural Similarity between an XML
Documents and a DTD and its Applications, Elsevier
Computer Science, 29 (23-46), 2004.

3. Chawathe S., Rajaraman A., Garcia-Molina H., and Widom
J., Change Detection in Hierarchically Structured
Information. In Proc. of the ACM Int. Conf. on
Management of Data (SIGMOD), Canada, 1996.

4. Chawathe S., Comparing Hierarchical Data in External
Memory. In Proc. of the 25th VLDB conf., p. 90-101, 1999.

5. Cobéna G., Abiteboul S. and Marian A., Detecting Changes
in XML Documents. In Proc. of the IEEE Int. Conf. on
Data Engineering, p. 41-52, 2002.

6. Lin D., An Information-Theoretic Definition of Similarity.
In Proc. of the 15th Int. Conf. on Machine Learning, 296-
304, Morgan Kaufmann Pub. Inc., 1998.

7. Maguitman A. G., Menczer F., Roinestad H. and
Vespignani A., Algorithmic Detection of Semantic
Similarity. In Proc. of the 14th Int. World Wide Web Conf.,
107-116, Chiba, Japan, 2005.

8. Nierman A. and Jagadish H. V., Evaluating structural
similarity in XML documents. In Proc. of the 5th Int.
Workshop on the Web and Databases, 2002.

9. Ray E.T., Introduction à XML. Edition O’Reilly, Paris, 327
p., 2001

10. Schlieder T., Similarity Search in XML Data Using Cost-
based Query Transformations. In Proc. of SIGMOD
WebDB Workshop, 2001.

11. Tekli J., Chbeir R., Yetongnon K., Semantic and Structure
Based XML Similarity: An integrated Approach. In proc.
of the 13th International Conference on Management of
Data (COMAD), New Delhi, India, 2006.

12. Zhang Z., Li R., Cao S. and Zhu Y., Similarity Metric in
XML documents. Knowledge Management and Experience
Management Workshop, 2003.

http://www.disi.unige.it/person/MesitiM

